If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+20x-5=0
a = 6; b = 20; c = -5;
Δ = b2-4ac
Δ = 202-4·6·(-5)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{130}}{2*6}=\frac{-20-2\sqrt{130}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{130}}{2*6}=\frac{-20+2\sqrt{130}}{12} $
| 2w+5w-4w=12 | | x-36=-44 | | (x/119.5)/((x/119.5)+(x/78))=0.395 | | f(6)=4^3 | | 37=20x+117 | | x-67=-2 | | 1/2(4x-6)=9 | | 1/2(9x-2-88)=2x | | (5x-3)-5x=6(-4+7x)+8x-9 | | x-219=-176 | | 4x+88=9x+2 | | x-55=-67 | | 3x^2*17x+16=-8 | | −3(2+4p)=2(2p−1) | | (4x+8)+(7x-1)+90=180 | | -3(1+x)=37-8 | | x/15-13=14 | | 20=-18-4y | | x/15-13=15 | | x-98=11 | | (5x-3)-5x=-24+50x-9 | | (4x-2)+(5x-4)=180 | | 3x+6+4x-12=360 | | 8t-7=17 | | 2.3x=23.1 | | 7(x-1)-2(2x-6)=2(-x-5)-6 | | -2(x+3)=5(x-4) | | (x)=-〖4x〗^3+〖4x〗^2+15x | | 11x+24=360 | | 7x+1-3=4x+2+4x | | 12x+60+3x+90=360 | | 8x-9=7x-9 |